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Abstract. Based on the effective-mass approximation, the energy spectrum of the free A- 
excitonstatesofcadmiumsulphideisstudied. Thestarkeffect inanelectric field, theZeeman 
effect and the diamagnetic interaction in a magnetic field of the A-exciton states are analysed 
by using a novel perturbative-variational approach. The results are compared with exper- 
imental data and previous calculations using different approaches. Our results are in good 
agreement with previous work and our method is much more efficient. 

1. Introduction 

It is known that cadmium sulphide has a hexagonal wurtzite structure. Its space group 
is C&, with the hexagonal axis generally referred to as the c axis. This structural 
anisotropy causes crystal-field splitting, which interacts with the spin-orbit coupling to 
split the valence band into three nearly degenerate sub-bands, A, B and C. The lowest 
hand gap is due to the A valence band and is at the Brillouin zone centre. The band-gap 
energy of the A valence band, which is a direct band, was measured by Seiler et a1 (1982) 
to be about 2.5825eV at 1.8K. The energy splitting of the valence band has been 
considered by Thomas and Hopfield (1961) and Litton et a1 (1972). It is usually believed 
that the A and B valence bands are split by the crystal field with a value of 11-16 meV 
and that the C band is split by the spin-orbit interaction with avalue around 57-109 meV 
below the B band. 

Over the past 30 years, numerous studies have been performed and detailed infor- 
mation about the nature of the free A-excitons in CdS and their behaviour in a magnetic 
field have been provided. Linear spectroscopy using one-photon reflectance (Thomas 
and Hopfield 1959, Blattnor et a1 1982, Venghaus et a1 1977, Broser and Rosenzweig 
1980), one-photon absorption (Hopfield and Thomas 1961, Blattnor et a1 1982, Shad 
and Damen 1971, Thomas and Hopfield 1961, Peyghambarian et a1 1989) and one- 
photon emission or luminescence (Litton et a1 1972, Thomas and Hopfield 1959, Cho et 
a1 1975, Suga et a1 1975, Venghaus et a1 1977, Broser and Rosenzweig 1980) and non- 
linear spectroscopy using two-photon absorption (Seiler etal 1982, Nquyen etal 1977a,b, 
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Stafford and Sondergeld 1974, Damen et a1 1977, Seiler et aZl983) techniques allowed 
various features of the magneto-optical effects in the A-exciton spectrum to be inves- 
tigated. The primary features were Zeeman splittings and diamagnetic shifts, from which 
effective masses and g-factors for conduction band and A valence band were extracted. 

Many different approaches based on the effective-mass approximation have been 
used to interpret the experimental data. Seiler et a1 (1982) and Hopfield and Thomas 
(1961) used a model semiconductor with conduction and simple A valence bands. In the 
work of Hopfield and Thomas (1961), a small anisotropy parameter y was introduced 
and the traditional perturbation approach was performed. A hydrogenic wavefunction 
was assumed as the unperturbed wavefunction; excellent interpretation of the observed 
data at zero external field was obtained. Seiler et a1 (1982) used a variational method 
with a hydrogen-like trial wavefunction containing four or five parameters. Good agree- 
ment is obtained. Many others (Cho et a1 1975, Blattnor et a1 1982, Suga et a1 1975, 
Venghaus et a1 1977, Voigt et a1 1979, Broser and Rosenzweig 1980, Pollmann 1976, 
Gerlach and Pollmann 1977, Seiler et a1 1982, Grmdmmr,  and Eimberg 1988) have 
considered the mixing and splitting of A and B valence bands under the interaction of 
electric and magnetic fields and large anisotropic mass effects. In these previous works, 
three different types of effects are usually included: namely, (i) the electron-hole 
exchange effect; (ii) the linear Zeeman effect; and (iii) the diamagnetic interactions. 
Under these circumstances, the Hamiltonian is in general an 8 x 8 matrix. Lipari (1972) 
took into account the coupling of A, B and C valence bands and, neglecting the exchange 
effect due to the magnetic field, simplified the Hamiltonian into a 6 X 6 matrix. 

In the present work, we propose a simple but much more efficient approximation 
method to study the binding energies and electric and magnetic splittings of the exciton 
states in CdS. For the purpose of illustration, we considered only the A valence band. 
Since the coupling between the A- and B-exciton levels is small in the weak-field region, 
we believe our treatment should be reasonable there. More exploratory work containing 
the mixing between A and B bands is in progress and the results will be published 
soon. Our calculation is based on the effective-mass approximation. The approximation 
method used in the present work combines the spirit of both the conventional per- 
turbative and the variational methods and was originally proposed by Lee et a1 (1982). 
The main idea of this perturbative-variational method (denoted PVM) is that, if a 
Hamiltonian that is originally not exactly solvable is added to and subtracted from the 
same term of some parameter A, the new Hamiltonian can be separated into two terms, 
with one term being exactly solvable while the other can be treated as a perturbation. 
Then the perturbation series of the energy eigenvalue can be made to converge rapidly 
by requiring the value of A to be chosen such that the first-order energy correction is as 
small as possible. This method has been successfully applied to the impurity-level 
calculations of both isotropic and anisotropic semiconductors (Jiang and Shan 1985, 
Huang et a1 1988). Good agreement has been obtained. 

2. Theory 

2.1. Free-exciton binding energies 

The energy level spectrum of the free A-excitons of CdS can be conveniently calculated 
within the framework of the effective-mass approximation. The basic Hamiltonian 
appropriate to our case (Hopfield and Thomas 1961) can be expressed as follows: 
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-e2/[El&//(Xe - X h l 2  + EIEl/(ye -Yh)’ + &:(Ze - zh)2]1/2 (1) 
where the z axis is chosen in the c direction of the hexagonal structure and the static 
anisotropicdielectric constant is assumed. Here me, (mhi) is the electron (hole) effective 
mass perpendicular to the c axis; mell (mhll) is the electron (hole) effective mass parallel 
to the c axis; xe, ye, ze (xh, Y h ,  zh) are the electron (hole) coordinates; and E~ (&/I) is the 
low-frequency (clamped) dielectric constant perpendicular (parallel) to the c axis. The 
Hamiltonian defined in equation (1) can be reduced to a simpler form by considering 
some simple transformations. Use a centre-of-mass coordinate system where the centre- 
of-mass motion is set to zero and perform the following transformation: 

x = x, - xh Y = Y e  - Y h  = ( E i / E l l ) 1 ’ 2 ( z e  - 2h) E o  = ( & / I  / E l  1 
1 1  1 1 1 1  
- +- - +- 

P i  m h i  PI1 mell mhll 

1 2 1  l l E  _--_+--A - 
PO 3 pLI 3 PII Y = Po( ;  - ;;j. 
Here is the effective static dielectric constant, p o  is the effective mass of the electron 
and yis the anisotropy parameter of the exciton level. Then equation (1) can be rewritten 
as 

Originally, Hopfield and Thomas (1961) treated the second and third terms in equation 
(2) as the perturbation. This process requires tedious calculation of a large number of 
matrix elements when we extend it to higher-order corrections. Now, if we regroup the 
terms in equation (2a), the Hamiltonian can be changed into the following form: 

where 

UPt = UP0 + Y‘/3 UP1 = 1 / 1 0  - 2Y’/3 Yl = Y / P o .  
This Hamiltonian looks exactly the same as that of the anisotropic semiconductor with 
transverse mass pt and longitudinal mass pl (Lee et a1 1982). In fact, we found that 
Hopfield’s perturbative result is slightly lower than that obtained by Kohn and Luttinger 
(1955). Thus, it seems to indicate the inaccuracy in treating those two terms as a 
perturbation. 

The Hamiltonian in equation (2b) can be reduced further into a simpler form by 
considering the following transformation: 

x ’ = x  Y 1 = Y  2’ = (11 /pt)1/22. 

Then equation (2b) can be rewritten as 

where A2 = 1 - pt/pl. To solve the problem, we introduce a parameter A into H by 
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adding and subtracting a term Ae2/Eor to make the Hamiltonian H separate into two 
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parts (drop the prime for simplicity): 
H = H o p )  + H’(A) 

where the unperturbed part Ho and the perturbation H’(A) are 
? I 2  Ae2 Ho(A) = - -v2 - - 
2P t &Or 

The solutions for H o  are the well known hydrogenic wavefunction 

W n / m ( P ,  6 ,  = Rnl(p)YLm(e, 47) 
with the unperturbed eigenvalues expressed in units of mean rydbergs (Ryd) as 

where 1 Ryd = e2/(2a; e o ) ,  and the effective Bohr radius a$ = Eo?12/(pte2). 
EO,,,(A) = - A2/n2 

The first-order energy matrix correction can be evaluated by the conventional per- 
turbation method, the diagonal terms for the nlm state being expressed (in Ryd) as 

where 

The values of SI, for some I and m and the non-zero off-diagonal matrix elements of the 
first-order energy correction are listed in appendix 1 and appendix 2, respectively. To 
obtain the total energy for the whole Hamiltonian, we first have to determine the value 
of A. For this purpose, we will employ a novel perturbative-variational method (PVM) 
(Lee et a1 1982) to determine the parameter A .  The main idea of this method is to find a 
suitable A that will cause the perturbation series 

En,, = E;,,(A) + AE$?,(A) + AE$L(A) + . . . 
= E % m ( A )  + AEnim(A) (8) 

to converge as fast as possible so that only the first few terms will be needed. Hence A is 
to be determined by the condition 

which can be satisfied by requiring that 

If AEnlm(A) is approximated by AE$L(A) of equation (8), the condition of equation (10) 
can be satisfied by requiring AE$),(A) = 0, using equations (6b) and (lo), yielding 

AEnIm(A) = 0. (10) 

A = s,, (11a) 

E n l m ( A )  = (-l/n2 ) G m *  (1lb) 

and the total energy eigenvalues are thus 
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2.2. The orbital magnetic effect: B 

When the direction of the external magnetic field is parallel to the hexagonal axis, the 
dominant two magnetic perturbations (Knox 1963) are: (i) the ordinary Zeeman term, 
which can be expressed in spherical coordinates as ip&,,,B a l a  9, , where pB = eh/2mc is 
the Bohr magneton andg,11= ( l /mh l/me,i)m; and (ii) the ordinary diamagnetic term 

radius. Therefore, the total Hamiltonian is 

axis 

( C B 2 / a i 2 ) ( x 2  + y2),where C = e2h Y a. ;2 /8pic2anda$ = coh2/p te2  istheeffectiveBohr 

The Schrodinger equation H Y  = Eu, can be solved by the perturbative-variational 
approach as mentioned in the last section by introducing a term Ae2/Eor to make the 
Hamiltonian H separate into two parts: 

H = H,(A) + H’(A). (13) 

The unperturbed Hamiltonian is now expressed as 

h2 he2 H,(A) = - -v2 - - 
2P t E r 7  

and the perturbed part is 

The solutions for the unperturbed Hamiltonian H o  are the hydrogenic wavefunctions 
with eigenvalues (in unit of mean rydbergs, e2/2a$ E n )  

= -A2/n2 (15a) 

and the energy correction due to H’ of the diagonal matrix elements can be expressed 
as 

AE$L(A) = 2A2/n2 - (2A/n2)Slm - 2a$meopBg,ilB/e + n2[5n2 + 1 - 31(1+ l)] 

x (213 + 312 - I + 21m2 + m2 - 1)C’B2/(21 - 1)(21+ 1)(21+ 3)A2 
(15b) 

where C’ = h ’ ~ ~ a $ ~ / ( 4 p , c ~ ) .  The eigenvalues of the total Hamiltonian H can be 
obtained numerically by diagonalising H ,  and the parameter A can be obtained by PVM 
as mentioned in the last subsection. 

2.3. The orbital magnetic effect: R I c axis and B / I x  axis 

When the magnetic field is applied in the direction perpendicular to the c axis and 
pointingin thex direction, the perturbation term, which depends linearly on the magnetic 
field, will mix the non-degenerate states 2p0 and 2p,,. One can choose a gauge that is 
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slightly asymmetric in such a way that the coupling by the linear term of n = 2 states to 
n = 3 states is minimised. In such a gauge, the perturbed term can be expressed as 

where 

and the diamagnetic terms are neglected because they are believed to be small enough. 
The matrix elements of L, can be expressed as 

( I ' m ' l ~ .  IIm) = (h/2)[(1-  m)(I + m + 1 ) ] ' / ~ 6 / / ~ 8 ~ , , ~ + 1  
+ (h/2)[(1+ m)( l -  m + 1 ) ] 1 ' 2 6 / / 4 , , 4 *  

The parameter A can be determined by PVM as we did in section 2.1. 

2.4. The electric effect: E // c axis 

When the electric field is applied in the direction parallel to the c axis, then the dominant 
effect on the exciton, which is the bounded electron-hole pair, will be the dipole effect. 
Since the quadrupole effect is usually small compared with the dipole effect, it is usual 
to neglect it. The perturbed Hamiltonian in this case is 

H ;  = -eE(e( l /&l)1/2z .  
The matrix elements of z for n' = n can be evaluated as 

(nI'm'jzjnIm) = -a${dr,,[n2 - ( I  + 1 ) ~ ] ~ / ~ 8 / , , / + ~ 8 , , , , , ~  
3n 
2A 

+ d/- ' , , (d  - l y 6 / , , J - l a m , , m }  
where 

dl,m = { [ ( I  + 1)2 - m2]/[(21 + 1)(21+ 3)]}''*. 

For the matrix elements with n' # n ,  one can use the following formula: 

(n  + n')"'+" 
(n l l r[n ' ,  1 - 1) = 

(- 1)"' -1 ao* (i" + I)!(n' + I - 1)!i1I2 ( n  - n r ) n + n ' - 2 1 - 2  
4A(21- l)! n - I - l ) ! (n '  - l ) !  

( n  - n')' 
4nn' i -nr - 2,  -n: ; 21; - 

where n, = n - I - 1, n: = n' - I and 

The parameter A can be determined by PVM as mentioned in section 2.1. 
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Table 1. Values of some physical quantities for CdS. The effective electron and hole masses 
are in terms of the electron mass. The data listed in the first and second rows are adopted 
from Hopfield and Thomas (1961) and Seiler et a1 (1982) (denoted HT and SL). 

~~ ~ 

HT 0.205 0.205 9.53 9.02 0.70 5.0 0.258 0.159 
SL 0.210 0.210 8.90 8.90 0.64 0.64 0.2177 0.158 

Table 2. A-exciton energy levels referred to the band gap of A valence band to conduction 
band E$ = 2.5825 eV (at 1.8 K) of CdS. The energy is expressed in meV. 

Theor. Theor. 
Exp. EXP 

State (HT) Ours HT (SL) Ours SL 

Is 29.8 27.375 27.0 - - 
2s 6.9 6.844 6.7 - - 
2Pn 7.5 7.345 7.1 7.86 7:744 
2P2, 6.9 6.600 6.5 7.17 7.080 

- - 3s - 3.042 - 
3 ~ n  - 3.211 3.2 3.60 3.442 
3p,, - 2.933 2.9 3.20 3.147 

- - 3 4  - 3.211 - 
3d+l - 3.113 3.0 - - 

- 2.889 2.9 - - 3d22 

2.5. The electric effect: E i c axis and in x direction 

In this case the perturbed Hamiltonian can be expressed as 

8.247 
7.277 

3.677 
3.241 

- 

and the matrix elements of -eEx for n = n’ can be evaluated as 

For the matrix elements with n # n’, one can use equation (19b). The parameter A can 
be determined by PVM as mentioned in section 2.1. 



2814 C M Dui et a1 

Magnetic f s l d  I k G l  

Figure 1. The binding energies of 2p0,,, and 3p0,,, 
statesin a magnetic field in the direction parallel to 
the c axis. The observed data (circles) are adopted 
from Seiler er a1 (1982). 

Mognetic field ( T I  

Figure 2. The Zeeman splittings of 2p=,, 3p,,, 
3d,, and 3d,, states in a magnetic field in the 
direction parallel to the c axis. The observed data 
(circlesfor2p.,statesand trianglesfor3pZ, states) 
are adopted from Seiler era/ (1982). 

3. Results and discussion 

The physical properties of CdS observed by Hopfield and Thomas (1961) and Seiler et 
a1 (1982) are presented in table 1. The binding energies calculated in the present work 
by using these physical properties are listed in table 2. The observed and theoretical 
values obtained by Hopfield and Thomas (1961; denoted HT) and Seiler et a1 (1982; 
denoted SL) are also presented for comparison. Since the physical properties obtained 
in the previous work are slightly different from each other, to make a suitable comparison 
we present two sets of calculated results, which are obtained by using the physical 
properties of HT and SL respectively. We can see from table 2 that our results are in good 
agreement with the experimental values and are also consistent with the previous 
theoretical results in spite of the simplicity of our approach. However, some of our 
results are slightly higher than those of Seiler et a1 (1982), which are obtained by using 
a complex trial function; it is very difficult to extend their approach to the other higher 
excited states due to the difficulty in orthogonalising different excited-state wave- 
functions. 

The orbital magnetic effects on the binding energies due to a magnetic field applied 
in the direction parallel to the c axis are shown as functions of magnetic field in figures 
1-4. Our results of 2p0,+, and 3p0,+, are compared with the observed data of Seiler et a1 
(1982) in figure 1. The calculated and observed Zeeman splitting and the diamagnetic 
effect of 2p0, *1 and 3p0, k1 are shown in figures2 and 3 respectively. The observed Zeeman 
effect shown in figure 2 has been divided by a factor of 2 because the value of the g-factor 
chosen by Seiler et al is unreasonably large and is almost twice ours. In order to make a 
comparison, we also perform a conventional perturbation calculation of the energy 
splitting of 2p0, +1 and 3P0,il states due to a magnetic field applied in the direction parallel 
to the c axis. The results are shown in figure 3. One can note from figure 3 that the result 
by PVM obviously agrees better with the observed data of Seiler et a1 (1982) than do 
those of conventional perturbation calculation. The deviation between the conventional 
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Figure 4. The binding energies of A-exci- 
ton states in a magnetic field in the direc- 2po 

L- \// 

Magnetic field lkGI are adopted from Seiler eta/  (1982). 

perturbation calculation and the experimental data becomes quite large when the mag- 
netic field strength is stronger. Figure 4 shows the binding energies of the A-exciton of 
n = 2 and 3 states under a magnetic field in a direction parallel to the c axis. In the 
calculation of figure 4, the physical properties of CdS obtained by Seiler et aZ(l982) are 
used. 
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1 1 
0 LO 80 

Magnetic field IkG) 

Figure5Theenergysplittingsofthen = 2exciton 
states in a magnetic field perpendicular to the c 
axis. The parameters are adopted from the work 
of Hopfield and Thomas (1961). 

- a  ~- A- -- 
0 LO 80 

Electric field (kV m - ’ l  

Figure 7. The energy shift of n = 2 states in an 
electric field parallel to the c axis. The parameters 
are adopted from the work of Hopfield and 
Thomas (1961). 

Magnetic field (kG) 

Figure6.The energy splittingsof then = 3 exciton 
states in a magnetic field perpendicular to the c 
axis. The parameters are adopted from the work 
of Hopfield and Thomas (1961). 

-2.5 I 

3s 
i / 

Electric f ield IkV .-‘I 

Figure 8. The energy shift of n = 3 states in an 
electric field parallel to the c axis. The parameters 
are adopted from the work of Hopfield and 
Thomas (1961). 

Figures 5 and 6 show the binding energies of the A-exciton of n = 2 and 3 states under 
a magnetic field applied in the direction perpendicular to the c axis and pointed in the x 
direction. The parameters used in our calculations of figures 5 and 6 are adopted from 
the observed data of Thomas and Hopfield (1959, 1961) and Hopfield and Thomas 
(1961). Since there are no experimental data available for these cases, we shall present 
our results for future publication. 

The electric-field effects on exciton states of CdS are calculated by using the observed 
data of Hopfield and Thomas (1961). Figures 7 and 8 show the Stark splitting of n = 2 
and 3 states under an electric field applied in the direction parallel to the c axis. The 
Stark shifts of n = 2 and n = 3 states under an electric field applied in the direction 
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/- ‘“4 
1 -6t _/-- --- Figure9,Theenergyshiftofn = 2andn = 3states 

in an electric field perpendicular to the c axis 
The parameters are adopted from the work of 

.~ 2P, , 
I ~- -5 m 
I 2-_ 

r- 

0 &O 80 Hopfield and Thomas (1961) 

____ ___-- 
- 8, 

Electric field (kV m-’I 

perpendicular to the c axis and along the x axis are shown in figure 9. We also perform 
a conventional perturbation calculation of the electric-field effects on the A-exciton 
states in CdS. It is found that the electric-field effects obtained from conventional 
perturbation treatment (not shown here) agree closely with those obtained by PVM when 
the electric field strength is weak. When the electric field strength becomes stronger, the 
deviation between PVM results and those obtained by the conventional perturbation 
method (not shown here) becomes slightly larger, but still falls within a reasonable 
range. 

4. Conclusions and summary 

We have calculated the binding energies, the Zeeman and Stark splittings of the states 
of CdS. The magnetic field and the electric field are assumed to be applied either in the 
direction of the c axis or in the direction perpendicular to the c axis. An approximation 
method that combines the spirit of both the conventional perturbation method and the 
variational principle is employed in our calculations. Our calculated results are used to 
compare the available experimental data and previous theoretical results obtained by 
conventional perturbation methods. The conventional variational calculation with a 
complex trial wavefunction (Pollmann 1976, Gerlach and Pollmann 1977, Seiler et a1 
1982, Grundmann and Bimberg 1988) is also capable of obtaining good agreement with 
the observed binding energies; however, in the variational approach the calculation 
must be started from the ground state. The excited states cannot be calculated inde- 
pendently and directly. Furthermore, the difficulty of seeking the orthogonal trial 
excited states increases with increasing n. On the contrary, our treatment can deal with 
any excited state independently and work them out very easily, and the approximation 
solution can be optimised by adjusting the parameter A.  Our method is certainly much 
easier and more efficient than the ordinary perturbation method. This is simply because, 
in the ordinary perturbation approach, one has to calculate a large number of matrix 
elements as one proceeds to calculate the higher-order corrections and there is no way 
to make the perturbation series converge as rapidly as possible. 
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Appendix 1 

The values of SI, are given by 

Obviously SI, = SI,-,, because YI,-m(O, q )  = (-l)"Y&(0, q) .  If we put 

I ,  (A) = (sin-' A)/A Z,(A) = (1 - A2)'I2/A2 

we get by elementary integration 

So0 = I l (A) 

SI0  = (3/2)[h(A)/A2 - I2(A>l 

S1,*1 = (3/4)[(2 + l /A2  >II(A> - 12(A)I 
S2,+0 = (5/8){[2 - 6/A2 + 27/(4A4)]11(A) + [3/2 - 27/(4A2)]Z2(A)} 

S2,zi = (15/4){[l/A2 - 3/(4A4 )III(A) - [1/2 - 3/(4A2 )Iz2(A)} 
S2.** - - (15/16){[2 - l / A 2  + 3/(4A4)]Z1(A) + [3/2 - 3/(4A2)]Z2(A)} 
S30 = (7/4){[9/(2A2) - 45/(4A4) + 125/(16A6)]Z1(A) - [7/6 - 145/(24A2) 

+ 125/(16A4)]Z2(A)} 

S3,*2 = (105/8){[1/(2A2) - 3/(4A4) + 5/(16A6)]Z1(A) - [1/6 - 13/(24A2) 

+ 5/(16A4 )Ir,(A)>. 
Also 

Appendix 2 
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(R20 / e 2 / ~ O r / R 3 2 )  = -28(2/5)5v/3/5A 

(R32 Ie2/Eor IR30)  = [2/(34fl)1A 
(R3* Ie2/EOrIRlo) = [1/(3'2'd%)]A. 
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